Self-organizing Systems 1

Self-organizing Systems

Introductory article

Scott Camazine, Boalsburg, Pennsylvania, USA

CONTENTS

What is self-organization?

Emergent properties in a self-organizing system
How does a self-organizing system work?

Simulation of self-organizing systems
Self-organization in the neural and cognitive sciences

Self-organizing systems are physical and biological
systems in which pattern and structure at the global
level arises solely from interactions among the
lower-level components of the system. The rules
specifying interactions among the system’s com-
ponents are executed using only local information,
without reference to the global pattern.

WHAT IS SELF-ORGANIZATION?

Self-organization is a process whereby pattern at
the global level of a system emerges solely from
interactions among the lower-level components of
the system. The rules specifying the interactions
among the system’s components are executed
using only local information, without reference to
the global pattern. Examples of self-organization
include a wide range of pattern formation pro-
cesses in both physical and biological systems:
sand grains assembling into rippled dunes, chem-
ical reactants forming swirling spiral patterns, the
patterns on sea shells, or fish swimming in coordin-
ated schools (Figure 1). ‘Pattern’ is used here in a
broad sense to refer not only to a particular ar-
rangement of objects in space, but also to structure
and organization in time. An example is the re-
markable synchronous flashing that sometimes de-
velops among aggregations of thousands of fireflies
in southeast Asia. In neurobiology, self-organiza-
tion contributes to temporal structure and anatom-
ical organization in systems ranging from central
pattern generators in simple invertebrates to cogni-
tion in humans.

In self-organizing systems, pattern and organiza-
tion develop through interactions internal to the
system, that is, without the intervention of external
influences, such as a ‘leader’ who directs or over-
sees the process. The pattern is an emergent prop-
erty of the system itself, rather than a property
imposed upon the system by an external supervis-
ory influence.

EMERGENT PROPERTIES IN A
SELF-ORGANIZING SYSTEM

The term ‘emergence’ refers to a process by which a
system of interacting elements acquires qualita-
tively new pattern and structure that cannot be
understood simply as the superposition of the indi-
vidual contributions. Although the term may sug-
gest that something mysteriously or magically
materializes within the system, this is not the case.
The human mind is generally poor at predicting the
properties of systems that consist of multiple com-
ponents with complex, dynamic interactions. Thus,
even if one has a full knowledge of the system'’s
elements and their mode of interaction, the collect-
ive properties of a self-organizing system often
seem to arise unexpectedly.

HOW DOES A SELF-ORGANIZING
SYSTEM WORK?

An example may make this abstract description of
self-organization and emergent properties clearer.
Striped and mottled patterns are found throughout
nature —on a zebra’s coat, on a fish’s skin, and in the
ocular dominance columns of the brain (Figure 2).
Experimental and theoretical work suggests that
these patterns develop from a few simple rules
that are continually iterated among the components
of the system. Suppose, for example, that each pig-
ment cell on a zebra’s coat could either produce a
dark pigment or not, depending on a certain chem-
ical activation above or below a certain threshold
level. Further suppose that the cells in the skin
produced both a chemical activator and an antagon-
istic inhibitor (called ‘morphogens’), which both
diffused through the skin. The rules regulating the
state of each cell — either ‘on’ (producing pigment)
or ‘off’ (not producing pigment) — depend on the
relative strengths of the activation and inhibition,
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Figure 1. Examples of self-organized pattern formation
in physical, chemical, and biological systems. (a) Sand
dune stripes. (b) Belusov-Zhabotinsky chemical reaction
(image courtesy of Stefan C. Miiller). (c) A cone shell
from Ceylon.

their diffusion rates, the initial distribution of the
cells, and their thresholds for pigment production.

In 1952, Alan Turing first suggested the general
scheme for this mechanism of self-organized pat-
tern formation. In 1972, A. Gierer and H. Meinhardt
developed a model as shown in Figure 3. Their
system has a series of sites that are the source of
a short-range activator, which has two functions:
to promote its own productions (autocatalysis),
and to cause an increase in the production of an

Figure 2. Striped and mottled patterns found in bio-
logical systems. (a) Alternating stripes on a zebra’s coat
(Equus grevii). (b) Mottled pattern of pigments on the skin
of a vermiculated rabbitfish (Siganus vermiculatus).
(c) Ocular dominance stripes in the visual cortex of a
macaque monkey. Regions receiving inputs from one
eye are shown in black, and regions receiving inputs
from the other eye are shown in white. Adapted from:
Hubel DH and Wiesel TN (1977) Functional architecture
of the macaque monkey visual cortex. Proceedings of the
Royal Society, Series B 198: 1-59.

antagonist, the inhibitor. Since the inhibitor dif-
fuses rapidly into the surroundings, the result is a
local increase in the activation and a long-range
antagonistic effect that restricts the self-enhancing
reaction and keeps it localized.
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SIMULATION OF SELF-ORGANIZING
SYSTEMS

Because of the difficulty of predicting the behavior
of these systems, computer simulations are a useful
means of performing ‘thought experiments” and for
better understanding how these systems work. One
method of modeling these systems is by the use of
nonlinear differential equations. Another method
is to simulate the system by means of cellular
automata.

A cellular automaton is a simulation that is dis-
crete in time, space, and state. Typically, the
components (cells) of the system are arranged on

Activator

Inhibitor

Figure 3. Reaction scheme for pattern formation by auto-
catalysis and long-range inhibition. The two arrows
denote activation, with the activator stimulating both its
own production (autocatalysis) and that of the inhibitor.
The jagged line shows the effect of the inhibitor which
provides negative feedback by inhibiting the effect of the
activator. Adapted from: Meinhardt H (1995) The Algo-
rithmic Beauty of Sea Shells. Berlin, Germany: Springer.

a two-dimensional grid or lattice. Each cell is char-
acterized by its location on the grid and its condi-
tion (state). Cells interact with each other according
to a set of simple rules which take into account their
proximity to neighboring cells, their own state, and
the states of their neighbors. The rules specify the
transition of the cell from one state to another as the
system evolves over time.

Consider the example of animal coat patterns
presented above. This can be implemented as a
cellular automaton model that consists of a set of
cells laid out on a grid. Each cell is initially assigned
a state randomly, ‘on” or ‘off’. Each ‘on’ cell is
assumed to produce a specified amount of activator
and a specified amount of inhibitor that diffuse at
different rates across the grid. In the simulation,
each ‘on’ cell is represented as black and each ‘off’
cell is represented as white. At each timestep, the
program calculated the net amount of activation at
each site on the grid. This is determined as the
difference between the sum of all the activation
from the cells in the neighborhood and the sum of
all the inhibition from those cells in the neighbor-
hood. If this total is above a prespecified threshold
level, then the cell at that site is assigned the ‘on’
state; otherwise, it is assigned the “off” state. In this
manner, cells switch from one state to another
according to a single rule. The program continually
iterates the rule, causing a pattern to emerge from
the initial random array of ‘on” and ‘off’ cells, as
shown in Figure 4. For one set of diffusion rules,
an irregular mottled pattern develops. When the
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Figure 4. Cellular automaton simulations of pattern formation according to an activation-inhibition model. In each
example, the first grid shows the initial random state of the system, the second grid shows an intermediate state, and
the third grid shows the final stable pattern. (a) Time sequence showing a striped pattern formation, as in Figures 2(a)
and 2(c). (b) Time sequence showing a mottled pattern formation, as in Figure 2(b).
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conditions are changed slightly, a zebra-stripe pat-
tern develops. The only differences between the
two examples shown are that in the zebra-stripe
pattern the diffusion of the activator and inhibitor
is greater in one direction than the other, and that
the relative strengths of the activator and inhibitor
are different in the two cases.

SELF-ORGANIZATION IN THE NEURAL
AND COGNITIVE SCIENCES

To understand the brain is one of the greatest chal-
lenges in biology. The brain of an insect such as
a honey-bee contains relatively few neurons -
approximately one million. In isolation, each
neuron is essentially a simple switch. When stimu-
lated sufficiently, an impulse is fired, and a brief
electrical event called the action potential moves
through the cell from one end to the other. Al-
though the insect brain is miniscule, with relatively
few neurons, compared with that of birds or
mammals, it nonetheless coordinates very sophisti-
cated behaviors. The honey-bee is arguably more
complex than any computer. This tiny insect can
navigate by the sun, fly to a food source, make
decisions, communicate with other honey-bees,
and perform many other complex activities.

The brain achieves this complexity largely
through the connectivity of its elements and their
interactions. Each neuron is connected to others
through synapses, which form a vast network of
dense interconnections. In ways that we are just
beginning to understand, this connectivity is the
basis of the brain’s enormous complexity.

Neuroscientists are beginning to understand
both how these connections among the neurons
develop and how their interactions make cognition
possible. Both of these processes rely, in large part,
on self-organization. One of the great mysteries of
biology is how the enormous morphogenic, physio-
logical, behavioral, and cognitive complexity of an
organism can be achieved with the limited amount
of genetic information contained within the
genome. It is inconceivable that the pattern of con-
nections for each neuron in the brain could be
genetically coded. Rather, there must exist special
mechanisms for economizing on the amount of

information that must be coded within the
genes. Self-organization is such a mechanism. For
example, the pattern of ocular dominance stripes in
the visual cortex of the brain (Figure 2(c)) is a char-
acteristic morphogenic feature of neuroanatomical
organization. The neural inputs from each eye to
the visual cortex in the back of the brain consist of a
series of alternating stripes. This architecture is
believed to play an important role in how the
brain organizes and interprets visual information
received by the retina. This functional architecture
can be seen by injecting radioactive proline into one
eye, and making autoradiographs of sections of the
cortex. The resulting pattern is reminiscent of the
stripes seen on a zebra’s coat or the ridges of a sand
dune. These patterns are believed to arise through a
self-organizing activation-inhibition mechanism
similar to that described above.

Studies such as these suggest that through nat-
ural selection, organisms can evolve mechanims
that rely on relatively simple sets of rules — algo-
rithms economically encoded in the genome.
Through self-organizing processes these algo-
rithms can generate the enormous complexity
seen in biological systems. The result has been the
evolution of complex morphological and physio-
logical adaptations and behavioral and cognitive
abilities.
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